

Overview – Materials for Distributed Generation

David P. Stinton

December 3, 2003

Distributed Generation Technologies

"Prime Movers"

2000

- \$900-\$1,200/kW
- 17-30% Efficiency
- .35 lbs/MWh NOx

2007

Cost competitive with the market

Microturbines

- 40% Efficiency
- 2010 .15 bs/MWh NOx

- 29% efficiency
- +2 lbs/MWhr NO_x
- \$600/kW
- 2001
- **38% Efficiency**
- 0.15 lbs/MWh NO_x
- \$400/kW

2010

Cost competitive with the market

Gas

Turbines

<.15 lbs/ MWh NO.

2000

- \$300-\$400/kW
- 25-40% Efficiency
- 2-3 lbs/MWh NO_x

Reciprocating

Engines

2007

- **Cost competitive with** the market
- **50% Efficiency**
- 0.15 lbs/MWh NO,

1992

Materials Projects Support the Advanced Microturbine Contracts

- Collaborate with suppliers to develop advanced ceramics and evaluate the mechanical properties and environmental stability of candidate silicon nitrides
- Develop and evaluate environmental barrier coatings for monolithic silicon nitrides and advanced composites
- Develop creep- and oxidation-resistant metals for higher temperature recuperators
- Develop a microturbine test facility to evaluate new recuperator materials

Near- and Long-Term Goals Have Been Identified by Microturbine OEMs

Maximum Materials Temperature Capability (°C)

600°C

650°C

700°C

750°C

850°C

950°C

347 Mod 347 20/25 Nb

Candidate Materials are being evaluated in the Recuperator Test Facility

Haynes 120 Special Metals 803 Haynes 230 Haynes 214

2000

2002

2004

2006

2008

2010

2012

TIME (y)

Collaboration Between Materials Producers, End Users, and ORNL Has Spurred the Development of Improved Recuperator Foils

Materials R&D Capabilities and Expertise

ORNL and Allegheny Ludlum Produced Creep Resistant Foils

OAK RIDGE NATIONAL LABORATORY ENERGY EFFICIENCY AND RENEWABLE ENERGY PROGRAM U. S. DEPARTMENT OF ENERGY

CREEP STRAIN (%

Advanced Materials Require Improved Oxidation Resistance

OAK RIDGE NATIONAL LABORATORY ENERGY EFFICIENCY AND RENEWABLE ENERGY PROGRAM U. S. DEPARTMENT OF ENERGY

A Recuperator Engine-Exposed For ~19,000 h @ 1100°F Shows Near-Surface Cr-Depletion

Model Alloys Are Being Used In The Development Of A Low-Cost Replacement For 347 SS With improved Temperature Capabilities

For Fe-20Cr-20Ni composition:

- Mn and Si appear to be most effective additions for oxidation-resistance
- However, if Cr- or Ni-content in base alloy is reduced, alloy becomes more susceptible to accelerated attack in water vapor

Next step is to modify Fe-20Cr-20Ni base to improve creep strength

ORNL's Recuperator Testing Facility Is Operational

thermocouples sample holder water lines

• In collaboration with Capstone Turbines, a 60kW microturbine was modified to evaluate candidate alloys for the next generation recuperators.

- Six port bosses were incorporated around the microturbine vessel to allow the placement of test specimens at the entrance of the annular recuperator.
- The microtubine was modified to achieve turbine exit temperatures (TET) as high as 850°C.

stainless steel foil deformed by creep

sample holder after 500-hr test at 800°C

welded foils

Metallic foils are welded to sample holder and mechanically-stressed using compressed air

OAK RIDGE NATIONAL LABORATORY
ENERGY EFFICIENCY AND RENEWABLE ENERGY PROGRAM
U. S. DEPARTMENT OF ENERGY

High-Temperature Recuperator Alloys Are Being Exposed In A Modified Capstone Microturbine At ORNL

Fixture used to expose samples in ORNL's Recuperator Materials

Test Facility.

Foils are exposed to several different temperatures during exposure.

Saint-Gobain Ceramics & Plastics

Material **Development**

Forming Development

➤ Established and Improved NT154

- Reproduced historical NT154 silicon nitride properties using Closed Loop Process
- Demonstrated improved as-processed surface strength and finish
- Demonstrated improved high temperature strength 776 MPa @ 1200 C

Saint-Gobain Ceramics & Plastics Dual Approach

▶ Net Shape Forming Development

Material Development

Net Shape Forming Development

Developed green-machining process

 Green CNC Machining Direct Casting

- Completed demonstration axial rotors
 - Good surface finish
 - Uniform, isotropic shrinkage
- Currently producing full-scale radial rotors
- Improvements to direct casting approach

≻Interactions

- Cooperative R&D with ORNL
- Participated in DOE Technology Characterization
- Interactions with Microturbine manufacturers including Capstone, UTRC, and Ingersoll-Rand

High-Temperature Materials are being Developed for Turbine Applications

Kennametal

Objective – Modify and upgrade existing low-temperature sialon for turbine applications

Sialon cutting tool

- Component fabrication via low-cost sintering process
- Tailor sialon properties to meet demands of microturbine applications

β reinforced α sialon

 Optimize grain boundary composition for improved environmental stability

Monolithic Ceramic Characterization and testing

Oak Ridge National Laboratory
University of Dayton Research Inst.
Connecticut Reserve Technology
Argonne National Laboratory

Database Provided to Materials Suppliers & End Users

Characterization of Components is Required for Life Prediction Assessment

Kyocera SN237 - corrected Uncensored Biaxial Strength Distribution 20°C - 0.1 mm/s - As-processed Surface

OAK RIDGE NATIONAL LABORATORY ENERGY EFFICIENCY AND RENEWABLE ENERGY PROGRAM U. S. DEPARTMENT OF ENERGY

Mechanical Characterization Effort at UDRI has Focused on Kyocera SN281 and SN282

Microstructure of Kyocera SN 282 showing a mixture of high aspect ratio grains and smaller equiaxed grains.

Slow Crack Growth Study of SN-281
Shows Similar Dynamic Fatigue Behavior at 1400°C and 1500°C.
No Slow Crack Growth is seen below 1400°C

12 mm

ADVANCED HIGH SPEED COMPUTING HAS REDUCED 3D X-RAY IMAGING BY 10X FROM 480 MINUTES TO 40 MINUTES

PARALLEL COMPUTING FACILITY FOR HIGH SPEED IMAGE GENERATION

EBC for Silicon Carbide

BSAS based EBC_{SiC} has accumulated > 40,000 hours at 2200F

State-of-the-art EBC_{SiC} system

CMC Combustor Liner with EBC_{sic} (Solar Centaur 50S)

2700F Burner rig demonstration with 300F thermal gradient through EBC

- ➤ EBC_{SiC} has completed 15,000 hr field test in Solar Turbines Centaur 50S
- ➤ EBC_{SiC} on monolithic SiC survived 100 thermal cycles in UTRC 2700F burner rig
- > Optimization underway to reach 30,000 life goal for IGT engine applications
 - Demonstrated coating refurbishment process
 - Identified top layer compositions with required steam stability
 - Advanced SAS based EBC_{SiC} showing promise in on-going field tests

EBC for Silicon Nitride

EBC_{SiN} being developed based on EBC_{SiC} success

EBC_{SiC} debits Si_3N_4 strength ~ 50%; at 20C; ~ 15% at 1204C

 EBC_{SiC} provided effective environmental protection to Si_3N_4

- > CTE mismatch is the key limitation of EBC_{sic} to silicon nitride materials
- ➤ EBC_{SiC} does provide effective Si₃N₄ protection despite CTE cracking
- ➤ Promising approaches to develop EBC_{SiN} have been identified
- ➤ EBC_{SiN} system is being optimized for:
 - Bond layer adhesion to substrate
 - Chemical compatibility and stability
 - Thermal cycling durability
 - Substrate property retention

Pack Cementation for EBCs S. D. Nunn and R. A. Lowden, ORNL

FY2003 Accomplishments:

- Evaluated three Si₃N₄ materials
- Studied coating in Ar, N₂, & Air
- Prepared 12 pack compositions
- Processed at three temperatures
- Coated over 75 Si₃N₄ samples

Pack cementation of AS800 Si_3N_4 bars in an Al - NH_4Cl - Al_2O_3 pack at 1000°C for 5 hr. in Argon

Processing Variables:

- Pack composition
- Substrate composition
- Furnace atmosphere
- Temperature

Silicon Nitrides for Pack Cementation Coating

Si ₃ N ₄	Additives	Grain Boundary Phase
Honeywell AS800	La, Y, Sr	La-Apatite
Kyocera SN281/2	Lu	Lu ₂ Si ₂ O ₇
Saint Gobain NT154	Y	$\mathbf{Y}_{2}\mathbf{Si}_{2}\mathbf{O}_{7}$

Pack Cementation for EBCs

FY2003 Accomplishments:

• Evaluated coating morphologies using optical microscopy

• Identified coating compounds using X-ray diffraction analysis

Yb₂Si₂O₇

Key Materials Issues Will be Addressed in the ARES Program

- More durable / reliable NG spark plugs or ignition systems.
- Low-cost, rapid response NOx sensors.
- Low-cost materials for exhaust components.
- Low friction coatings for reduced wear

Corrosion/Erosion of Spark Plugs

Motivation

- Advanced Ignition System is a key element in Advanced Reciprocating Engines.
- Corrosion/erosion of spark plugs limits the long-term reliability and performance of ignition systems and, thus ARES.
- Improvement of high-temperature corrosion/erosion resistance of electrodes is a critical issue to maintain the durability of spark plugs.

Approach

- Working with National Transportation Research Center
- Inspect, test, characterize field-tested engines
 - Received ~50 plugs from Cat, Cummins
- Identify erosion/corrosion mechanisms of ground and central electrodes
- Develop alloy to extend spark plug life

DER Materials Program Addresses Industry Needs

Material Suppliers

(St.-Gobain, Kennametal, Honeywell) (Allegheny Ludlum, Haynes, Special Metals)

Microturbine & Recip OEMs

(Ingersoll Rand, Capstone, GE) (Caterpillar, Cummins, Waukesha)

Turbine OEMs

(United Technologies, Solar, GE)

Joint Effort Between Solar, Allegheny Ludlum, and ORNL Has Been Initiated

 To produce 5,000 lb batch of corrosionresistant 20/25 Nb and 20/20 foil

ORNL-modified processing to improve creep resistance

 Supply batch of foil to Capstone and Ingersoll-Rand

Collaborative Project has been Initiated to Develop a Carbon Foam Heat Exchanger

60kW Capstone µTurbine

Unifin

- MicroGen
- OAK RIDGE NATIONAL LABORATORY ENERGY EFFICIENCY AND RENEWABLE ENERGY PROGRAM U. S. DEPARTMENT OF ENERGY

- Optimize design of carbon foambased heat exchangers for CHP systems.
- Evaluate optimize design and model predictions using ORNL's 60kW Capston microturbine and a modified Unifin Microgen.

carbon foam heat exchanger

Keiser Rig Screens Ceramics, Composites & Coatings for Use in Turbine Hot Sections

- Temperatures up to 1500°C
- Pressures to 30 atm
- Low gas velocity (0.1 m/s)
- Water vapor pressures to 4 atm
- Up to ~60 specimens/run (multiple tubes)
- 1000's of hours of exposure

High-pressure, high water vapor contents are being investigated to simulate higher gas velocities

